/ /

  • linkedin
  • Increase Font
  • Sharebar

    Pallor and swelling in an athlete’s upper arm



    Deep-vein thrombosis in the upper extremity accounts for only 2% to 10% of all thrombotic events and is an unusual finding in a patient without previous trauma or damage to the area.1,2 This finding triggered further investigation to ascertain the etiology of the thrombus.

    Thoracic outlet syndrome (TOS) is a term used to describe signs and symptoms that arise from compression of the neurovascular bundle (including the brachial plexus, the subclavian artery, and subclavian vein) by various structures in the area just above the first rib and behind the clavicle, within the confined space of the thoracic outlet.3 There are 3 types of TOS: neurogenic, from brachial plexus compression; venous, from subclavian vein compression; and arterial, from subclavian artery compression. The symptoms noted with each type of compression are distinct. Compression of the brachial plexus causes upper extremity numbness and weakness; venous compression causes deep vein thrombosis and extremity swelling; and arterial compression causes distal thromboembolism, arm pain with exertion, or arterial thrombosis.4

    Next: Boy with ear pain and facial weakness

    Compression in the thoracic outlet area can result from a combination of congenital abnormalities, injuries, and physical activities. Variations of thoracic outlet anatomy can be congenital or acquired. Congenital examples include anomalous ribs and fibrocartilaginous bands, whereas acquired may arise from chronic inflammatory changes, masses, or development of bony malformation secondary to trauma.5

    Venous TOS is the second most common type after neurogenic and accounts for 5% of the cases. Upper extremity DVT can be divided into primary and secondary etiologies. Primary is also known as Paget-Schroetter syndrome or effort thrombosis. The symptoms typically occur in young patients who are engaged in sports activities or whose professions require them to perform vigorous repetitive exertion of the upper extremities, usually with the arms above shoulder level. The repetitive motion produces recurrent venous compression, which leads to perivascular fibrosis, focal stenosis, and subsequent thrombosis.6 Secondary UEDVT is related to a predisposing factor, such as previous peripherally inserted central catheters (PICC lines), subclavian vein cannulation, or malignancy.7,8

    Upper extremity edema is the hallmark of venous TOS. The diagnosis is supported by the demonstration of stenosis or occlusion of the corresponding subclavian vessel in a patient with the appropriate clinical history. Ultrasonography is the imaging test of choice because it is inexpensive and noninvasive. Duplex ultrasound is highly specific and sensitive for venous thrombosis of the axillary and brachial veins. Nonthrombotic stenosis of the subclavian vein can be hard to detect with ultrasound as the affected potion of the subclavian vein is behind the clavicle. Evaluation of a predisposing anatomic anomaly is important to identify so that earlier invasive therapy can be considered to diminish recurrence and improve long-term prognosis.

    To identify the point of vascular compression, CT studies can help to reveal the relationship of the vascular structures to the surrounding muscles and bone.9 However, venous compression is only present when the arm is in the abducted position. A CT scan performed with the arm in the resting position may underestimate the degree of narrowing at the thoracic outlet. An arm venogram in the abducted and nonabducted position can reliably confirm the presence of significant vascular compression.10

    Treatment of subclavian thrombosis with catheter-directed thrombolysis is currently accepted as the preferred initial treatment. Subsequent anticoagulation for 1 to 3 months following successful thrombolysis is recommended to allow endothelial healing and resolution of inflammation.11 Because of the risk of reocclusion, decompression surgery in patients with vascular TOS is advocated. The choice of the procedure depends on the anatomic anomaly; however, resection of the first rib is the treatment of choice.5,12,13 Patients with venous TOS who experience successful thrombolysis and subsequent decompression have 5-year secondary vein patency rates greater than 95% with successful clinical outcomes.12,13

    Patient outcome

    The patient in this case is currently undergoing 3 months of anticoagulation therapy and at its conclusion she is scheduled for surgery to resect the first rib. All genetic testing was negative. She is asymptomatic and has full function of her upper extremities.


    It is estimated that 60 million children aged 6 to 18 years are currently participating in organized athletic activity.12 Among these athletes, approximately 2.6 million children are seen in EDs for sports-related injuries each year.14 Although more commonly injuries present as sprains, fractures, and concussions, clinicians should also be alert for heat-related illnesses and repetitive motion injuries.15

    Venous thrombosis related to the thoracic outlet impingement in this case was triggered by the repetitive swinging motion of batting, but may present more subtly in pitchers and tennis players. Considering TOS in the differential of UEDVT can reveal an underlying anomaly that requires prompt attention.


    1. Lum YW. Diagnosis and treatment of upper extremity deep vein thrombosis and thoracic outlet syndrome. Clin Adv Hematol Oncol. 2016;14(3):162-164.

    2. Leebeek FW, Stadhouders NA , van Stein D, Gómez-Garcia EB, Kappers-Klunne MC. Hypercoagulability states in upper-extremity deep vein thrombosis. Am J Hematol. 2001;67(1):15-19.

    3. Sanders RJ, Hammond SL, Rao NM. Diagnosis of thoracic outlet syndrome. J Vasc Surg. 2007;46(3):601-604.

    4. Desjardins B, Rybicki FJ, Kim HS, et al. ACR Appropriateness Criteria suspected upper extremity deep vein thrombosis. J Am Coll Radiol. 2012;9(9):613-619.

    5. Grunebach H, Arnold MW, Lum YW. Thoracic outlet syndrome. Vasc Med. 2015;20(5):493-495.

    6. Vemuri C, Salehi P, Benarroch-Gampel J, McLaughlin LN, Thompson RW. Diagnosis and treatment of effort-induced thrombosis of the axillary subclavian vein due to venous thoracic outlet syndrome. J Vasc Surg Venous Lymphat Disord. 2016;4(4):485-500.

    7. Moore R, Wei Lum Y. Venous thoracic outlet syndrome. Vasc Med. 2015;20(2):182-189.

    8. Shebel ND , Marin A. Effort thrombosis (Paget-Schroetter syndrome) in active young adults: current concepts in diagnosis and treatment. J Vasc Nurs. 2006;24(4):116-126.

    9. Baxter GM, Kincaid W, Jeffrey RF, Millar GM, Porteous C, Morley P. Comparison of colour Doppler ultrasound with venography in the diagnosis of axillary and subclavian vein thrombosis. Br J Radiol. 1991;64(765):777-781.

    10. Sanders RJ, Hammond SL. Subclavian vein obstruction without thrombosis. J Vasc Surg. 2005;41(2):285-290

    11. Lee JT, Karwowski JK, Harris EJ, Haukoos JS, Olcott C 4th. Long-term thrombotic recurrence after nonoperative management of Paget-Schroetter syndrome. J Vasc Surg. 2006;43(6):1236-1243.

    12. Taylor JM, Telford RJ, Kinsella DC, Watkinson AF, Thompson JF. Long-term clinical and functional outcome following treatment for Paget-Schroetter syndrome. Br J Surg. 2013;100(11):1459-1464.

    13. Stracciolini A, Casciano R, Friedman HL, Meehan WP 3rd, Micheli LJ. A closer look at overuse injuries in the pediatric athlete. Clin J Sport Med. 2015;25(1):30-35.

    14. Centers for Disease Control and Prevention. Nonfatal traumatic brain injuries related to sports and recreation activities among persons ≤ 19 years—United States, 2001-2009. MMWR Morb Mortal Wkly Rep. 2011;60(39):1337-1342.

    15. National Institute of Arthritis and Musculoskeletal and Skin Diseases. Childhood sports injuries and their prevention: a guide for parents with ideas with kids. NIH Pub. 2006. 06-4821.

    Janice F Bistritz, DNP, CPNP, MS
    Dr Bistritz is a pediatric nurse practitioner, Montefiore New Rochelle Hospital, New Rochelle, New York.


    You must be signed in to leave a comment. Registering is fast and free!

    All comments must follow the ModernMedicine Network community rules and terms of use, and will be moderated. ModernMedicine reserves the right to use the comments we receive, in whole or in part,in any medium. See also the Terms of Use, Privacy Policy and Community FAQ.

    • No comments available


    Latest Tweets Follow