/ /

  • linkedin
  • Increase Font
  • Sharebar

    Emergency airway management

    Respiratory issues are some of the most common in-office emergencies for pediatricians, requiring knowledge of pediatric airway physiology for appropriate emergent care.

    Securing a child’s airway in an emergency setting can be challenging, and success here is dictated by a mosaic of factors such as clinician experience, appropriate instrumentation, and, importantly, the many anatomical and physiological considerations that differ significantly from the adult population. Airway management is one of the most important skills a pediatric emergency physician can have and, therefore, clinicians should have an in-depth understanding of the anatomical and physiological differences in children, and be acutely aware and vigilant of the pitfalls associated with emergency airway management in these patients.

    Recommended: Deciphering bacterial meningitis

    Endotracheal intubation is the standard for securing the airway in patients and remains the optimal airway management technique for providing better oxygenation and ventilation while at the same time avoiding gastric insufflation and protecting against aspiration. Nevertheless, success rates in children are lower than in adults, begging the need for improved efforts in correcting the lag.1,2

    Pediatric vs adult airway

    The anatomical differences in the normal pediatric airway compared with the adult airway are significant (Figure3), and these are more evident in children aged younger than 2 to 3 years.4 These differences, including a prominent occiput, large tongue, larger tonsils and adenoids, and a superior laryngeal position, are among some of the reasons why laryngoscopy and endotracheal intubation can prove challenging in the pediatric patient population.2-5

    The head of a child is larger relative to his/her body size, with a prominent occiput. This causes varying degrees of neck flexion and airway buckling in the supine position, possibly leading to anatomic airway obstruction in sleeping children, as well as interference in visualizing the glottis opening during laryngoscopy.6 A larger occiput, in combination with a shorter neck, makes laryngoscopy even more challenging, as it provides obstacles to the alignment of the oral, laryngeal, and tracheal axes. In contrast to placing a pad under the occiput of adults, placing a towel roll under the shoulders of the pediatric patient can suffice in achieving a neutral position of the neck, facilitating an optimal view of the glottis as well as ideal airway alignment in the patient.2-6

    Further impeding proper visualization of the deeper airway during direct laryngoscopy is a large tongue. Infants and young children have relatively large tongues that fill a greater portion of the oral cavity, and a large tongue is the most common cause of upper airway obstruction in children, particularly in patients with depressed mental status and concomitant loss of intrinsic airway tone. It is important to remember that in contrast to adults in whom the overwhelming majority of intrinsic airway obstruction occurs at the level of the soft palate, approximately half of obstructions in infants are retroglossal obstructions.2-6

    In young children, prominent adenoids and tonsils are also frequently found, often leading to elective ears-nose-throat (ENT) surgery. This increased mass of lymphoid tissue has been shown to contribute to airway obstruction in children. In addition, adenoidal bleeding can occur following the placement of a nasopharyngeal airway or nasotracheal intubation. In this scenario, the resultant blood in the nasopharynx and hypopharynx can lead to aspiration and render glottis visualization challenging. All these factors can contribute to the loss of upper airway space, which can further lead to difficulties with mask ventilation and obstruction during spontaneous ventilation, making laryngoscopy more challenging.2,4

    Compared with adults, the larynx in infants and children is positioned relatively higher in the neck, assuming a more cephalad position. The cricoid ring is located approximately at the level of the C4 vertebrae at birth, C5 at age 6 years, and C6 as adult, and angled more anteriorinferior to posterior-superior. The vocal cords are not typically found at a right angle (90°) to the trachea.5 Although these factors do not affect laryngoscopic view, they can make the insertion of the endotracheal tube more challenging or more traumatic.

    NEXT: Age-specific differences


    You must be signed in to leave a comment. Registering is fast and free!

    All comments must follow the ModernMedicine Network community rules and terms of use, and will be moderated. ModernMedicine reserves the right to use the comments we receive, in whole or in part,in any medium. See also the Terms of Use, Privacy Policy and Community FAQ.

    • No comments available


    Latest Tweets Follow